

18th International Conference on Wetland Systems for Water Pollution Control

25 - 29 November 2024

Hydraulic modelling of a variably saturated treatment wetland for urban stormwater treatment to ensure resilient operation

https://life-adsorb.eu/fr/site

Ania Morvannou, Stéphane Troesch, Marie-Christine Gromaire, Nicolas Forquet

25/11/2024

The HYDR'EPUR® System Nature-based solution for runoff and CSO

CHERCHE & DÉVELOPPEMENT

The Life ADSORB project

https://life-adsorb.eu/fr/site

Main objectives

- Demonstrate the applicability of a treatment wetland to effectively reduce pollutant loads (TSS, metallic and organic micropollutants) from runoff water in a natural area
- Better understanding and identification of mechanisms and parameters influencing water flow, transport and fate of micropollutants \rightarrow optimize design and operational

How can modelling contribute ?

The Life ADSORB experimental site, in Paris

Storage and pumping station

Saint James pond

Bois de Boulogne park (Paris)

tormwater overflow

1 Rainwater passing through the stormwater overflow to the pumping station

2 Stored water sent by pumps to the treatment wetlands

3 The water reaches the filters and passes through them

4 The treated water flows to the river which feeds the Saint James pond

5 The overflow from the pond is directed towards another storm overflow

6 The treated water flows back into the river Seine

200 m

RIE ELOPPEMENT

The treatment wetland pilots

- 2 pilot TWs of 600 m²
- Treatment of runoff water; Metallic and organic micropollutants
- Similar configuration (100 m long, 1 m deep) and operation Alternation every month
- Transition layer (10 cm) + drainage layer (50 cm)
- Single difference between the two pilots: composition of the filtering layer

TW1: only sand (40 cm) TW2: layer of specific adsorbent material (micropollutants, Rainclean[®], 20 cm) between two layers of sand (10 cm each)

The treatment wetland pilots

TW/2

	10%
Oulet	
1 single feeding point/pilot at one extremity;	-
ireated water outlet at the opposite	TW
Outlet: throttle outflow at 30 cm: saturated layer and flow control	

Mode	"Dry weather"	Wet weather
Feeding volume (m ³ /d)	780	1900
Inlet flow rate (L/s)	33	72
Outlet flow control (L/s)	20 max	
	N NO.	2 T

2 feeding modes : dry weather / wet weather

Conceptual model

Determination of hydraulic parameter values (parametric study)

Parameters	Values
n (Manning-Strikler coefficient linked to roughness)	0.01 - 0.025 - 0.05 - 0.075
K _s deposit [m/s]	$8.10^{-5} - 2.55.10^{-4} - 1.10^{-3} - 2,5.10^{-3}$
α deposit [1/m]	1 – 5 – 9
θ _s deposit [-]	0.38 – 0.8
K _s filtration zone [m/s]	$3.10^{-4} - 8.10^{-4} - 1.10^{-3} - 2.5.10^{-3}$
α filtration zone [1/m]	1 – 5 – 13 – 17

Determination of hydraulic parameter values (parametric study)

Adjustment to the values of :

- Outflow rates
- Water level (Upstream / Middle / Downstream)

Results – Changes in water content

Alternation of feeding phases (59 minutes / 33.6 L/s) and drainage phases (165 minutes)

Results – Outflow rate and water level inside the filter – First batch

Results – Outflow rate and water level inside the filter – First batch

<u>Field</u>: due to the length of the drain, pressures increase in the drain \rightarrow water exits the drain towards the porous medium \rightarrow water heights increase in the filter

Unstream - Measured

<u>Model</u>: the direction of flows entering the drain has been constrained: water can only enter the drain and not leave it \rightarrow simulated outlet flows > observed AND simulated water depths < observed

ed o

Middle - Measured

n = 0.075

K_a filter = $2.5.10^{-3}$ m/s

Conceptual model

2. Water flow inside the filter (COMSOL)

3. Torricelli's formula (Matlab)

Results – Changes in water content

Alternation of feeding phases (59 minutes / 33.6 L/s) and drainage phases (165 minutes)

Results – Outflow rate and water level inside the filter – First batch

Even if the absolute values are not exactly reproduced, the dynamics are represented

The surrogate model

- <u>**Problem</u>**: calculation code representative of the complexity of the system but costly in terms of calculation time</u>
- <u>Solution 1</u>: simplifying assumptions are made to build a faster model while ensuring that it does not deviate too much from the original model
- <u>Solution 2</u>: model variables are explored in space: input conditions, initial conditions and operating parameters \rightarrow a 'regression' model is fitted to the model outputs

Conclusions

- With the 2D model: we know which parts of the filter are solicited by the flow and therefore where the micropollutants will be retained
- The problem with this approach: a calculation code representative of the complexity of the system BUT costly in terms of calculation time (! Long term)
- To be continued: construction of the surrogate model and modelling of the removal of micropollutants by adsorption and biodegradation
- This approach will facilitate the design of TWs that treat the micropollutants contained in stormwater and CSO

Thank you for your attention