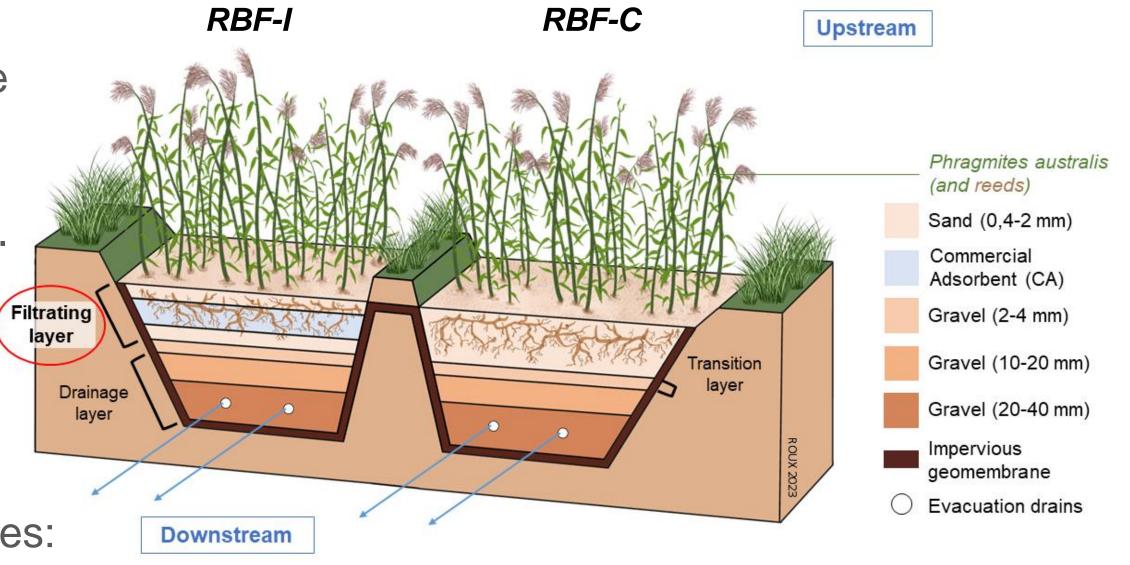
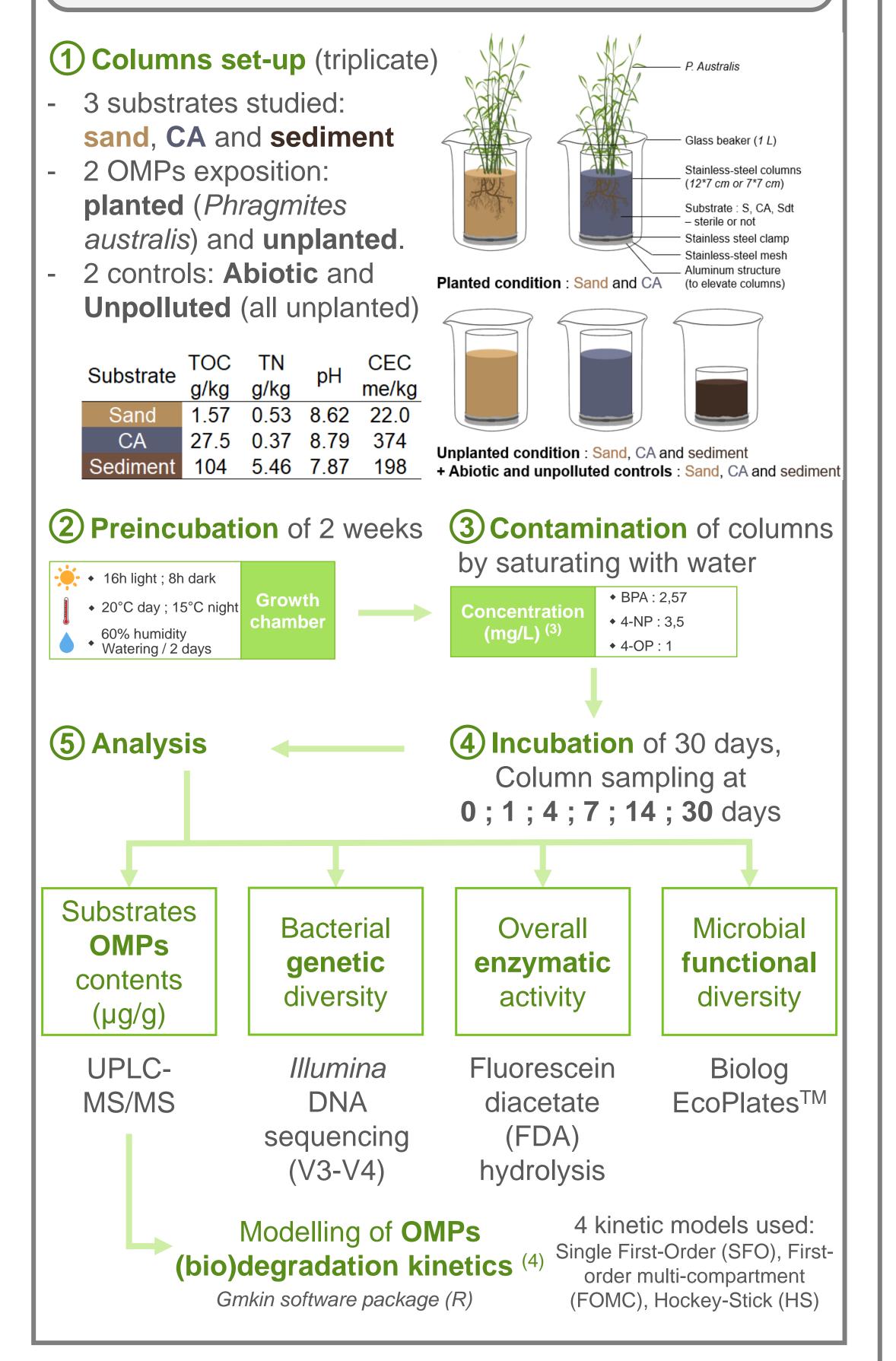
Biodegradation kinetics of organic micropollutants (OMPs) in planted or unplanted columns simulating an innovative reed bed filter treating runoff water.

J. Roux^(a), N. Chibane^(a), M. Seidl^(b), P. Neveu^(c), W. Achouak^(d), M. Barakat^(d), L. Boudahmane^(a), E. Caupos^(a), V. Alphonse^(a), A. Livet^(a), N. Bousserrhine^(a) (a) LEESU, Univ Paris Est Creteil, Ecole des Ponts, Creteil, France (*julia.roux@univ-paris-est.fr*); (b) LEESU, Ecole des Ponts, Univ Paris Est Creteil, Marne-la-Vallée, France; (c) Direction de la Propreté et de l'Eau (DPE) Ville de Paris, France; (d) CNRS équipe LEMIRE, CEA Cadarache, France


Context

Road runoff: contamination with metallic and organic compounds ⁽¹⁾ → Reed Bed Filters (RBF) are Constructed Wetlands used worldwide to manage urban runoff issues ⁽²⁾. Life Adsorb project: construction of an innovative RBF in 2020 to treat a part of road runoff in Paris. 2 RBFs : a conventional one (sand) and an innovative one (sand + Commercial Adsorbent (CA)). Sediment accumulates at the surface of the RBF with time.

Objectives of the project: monitor the evolution of the RBF efficiency and understand the **fate** of contaminants within the substrates. This requires the study of their **degradation**.


Objectives of this work:

- Evaluate biodegradation of three emerging organic micropollutants (OMPs) within the substrates: bisphenol-A (BPA), and two alkylphenols, 4-nonylphenol and 4-t-octylphenol (NP, OP).
- Elucidate the role of autochthonous microorganisms of substrates and vegetation in biodegradation

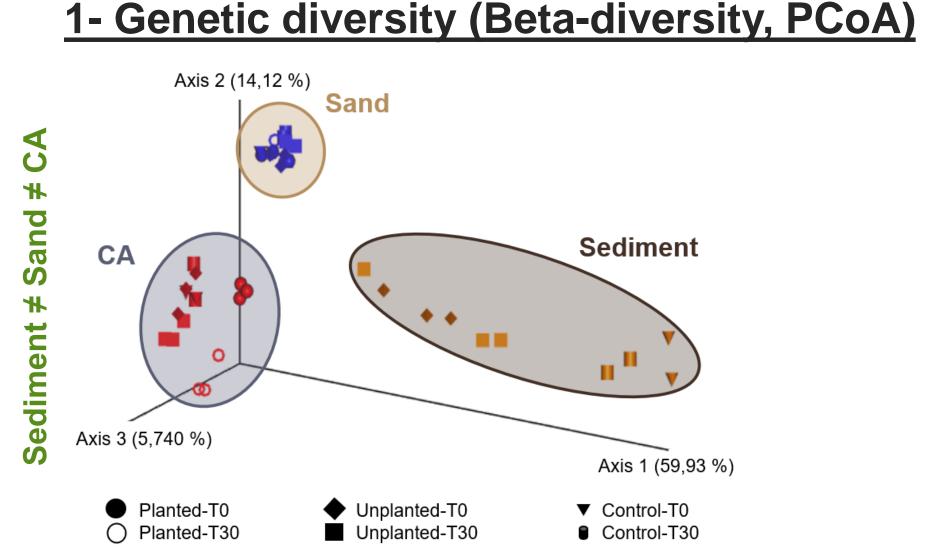
<u>The Reed bed filter (RBF). RBF-C: Conventional</u> <u>RBF ; RBF-I : Innovative filter</u>

Material and methods for aerobic biodegradation experiments

Results (* significant difference between % degradation of planted and unplanted condition, p-value KW test < 0.05) • (Bio)degradation of OMPs : impact of substrates and vegetation % of OMPs degradation **Rate of degradation: modeled DT50 Efficiency: Planted > Unplanted Efficiency: Planted < Unplanted in sand** (except OP in CA) **No relation in CA** (%)20 100 +3,6 days +16,0 +6,9 +13,3 +15.2 DT50 (days) 80 30 60 85,7 59,6 after 66,6 78,6 -6,8**2** 3 66,1 -11,28 Increase with P. 40,5 68, 40 australis Degradation 5 20 -2,56 +3,08 +1,74 16,6 10,4 9,4 9,0 7.5 0 0 Solt-NP CANP CAOP Sdt-BPA Gand-OP CA-BPA SdtOP GOLBRA SOLAR Sand-NP Sand-BPA CAMP CA-OP Sand-OP CA-BPA Sdt-OP ■ DT50 increased by plant ■ DT50 reduced by plant Biotic-Planted ■ Biotic-Unplanted □Abiotic ■ DT50 unplanted □ DT50 planted

- Between 60-99,6 % of degradation. The majority was due to microorganisms (40-92 % of biodegradation). Residual phase of all OMPs in unplanted CA and sediment (~20 %) were observed due to adsorption properties of substrates.
- Sand and CA: Ability to faster degrade OMPs in the RBF and better biodegradation if planted (rate and

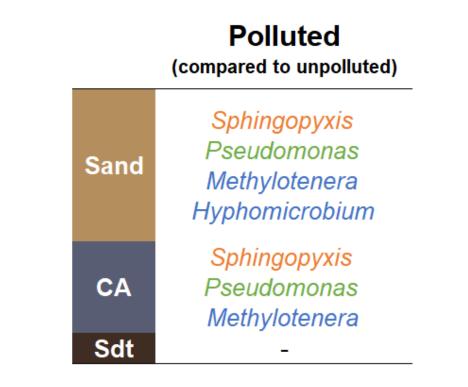
Conclusion


Our work is the **first to demonstrate the laboratory efficiency** of BPA, NP and OP **biodegradation** in the context of RBF treating runoff water. A publication is in preparation.

While the 3 substrates and their different bacterial communities showed ability to **rapidly biodegrade** the 3 OMPs studied, **CA** and **sediment** still showed high % **residual OMPs** (related to their adsorbing properties) which may lead to their accumulation over time.

% of biodegradation). Sediment: fast biodegradation except for BPA, and highest residual phases.

Significant effect of *P. australis* and more plant effect in NP and OP than BPA were observed.


• Microbial communities

- Communities structure were **different** in the three substrates.
- OMPs impacted communities in sediment.
- *P. australis* impacted communities in **CA**.
- Limited impact in sand during de period studied.

2- Genetic diversity (OMPs-degrading bacteria)

LEFSe analysis to assess bacterial genera with **significantly higher abundances** \rightarrow Focus on OMPs-degrading genera ^(5,6)

LEfSe = linear discriminant analysis effect size : comparison of bacterial taxa between planted and unplanted and between polluted and unpolluted conditions for each substrate at T30.

> OMPs concerned BPA NP/OP BPA/NP/OP

- Genera with differential abundance in polluted conditions → OMPs-degrading genera found.
- More OMP-degrading genera in planted (not shown) and polluted than unplanted and unpolluted conditions for sand and CA, no difference in Sediment.

→ P. australis and OMPs promote OMPs-degrading

P. australis and OMPs promoted OMPsdegrading genera in the 3 substrates, demonstrating the adaptation of bacterial communities to the contaminated water received. <u>3- Functional diversity (EcoPlates)</u>

	Sample	AWCD		Catabolic richness		
CA		ТО	T30	ТО	T30	
Λ	Planted-S	1.12 (0.13) <u>b</u>	0.99 (0.13) <u>b</u>	82.8 (7.45) <u>b</u>	66.1 (2,28) <u>a</u> *	
Sand	Unplanted-S	1.11 (0.23) <u>b</u>	0.72 (0.08) <u>a</u> *	82.8 (7.45) <u>b</u>	53.8 (3.72) <u>b</u> *	
Sa	Control-S	0.62 (0.02) <i>c</i>	0.33 (0.17) <i>d</i> *	54.8 (4.56) <i>c</i>	30.1 (8.12) <i>e</i> *	
Λ	Planted-RC	0.83 (0.13) <u>a</u>	0.68 (0.16) <u>a</u>	68.8 (7.45) <u>a</u>	57.0 (9.86) <u>ab</u>	
Sediment	Unplanted-RC	0.65 (0.19) <i>c</i>	0.49 (0.10) <i>cd</i>	56.5 (15.97) <i>c</i>	41.9 (9.12) <i>c</i>	
	Control-RC	0.69 (0.16) <i>ac</i>	0.51 (0.21) <i>c</i>	55.9 (8.12) <i>c</i>	39.8 (9.86) <i>ce</i>	
dir	Unplanted-Sdt	2.16 (0.02) <i>d</i>	1.91 (0.08) <i>e</i> *	100 (0) <i>d</i>	96.8 (0.01) <i>d</i> *	
Se	Control-Sdt	2.10 (0.04) <i>d</i>	1.81 (0.03) <i>e</i> *	100 (0) <i>d</i>	97.8 (1.86) <i>d</i> *	

ACWD = Average Well Color Development

genera development in sand and CA

Significant effect of *P. australis* at T0 and T30 for sand and CA

- Significant effect of **OMPs** at T0 and T30 for sand

→ P. australis and OMPs improved functional diversity (intensity, diversity) of sand and CA during incubation.

This work was carried out in the frame of the European Life Adsorb project led by the Municipality of Par	 ▲ Mean (± SD), n= 3. All data were compared with R software using Kruskal Wallis test . Each different letter means significant difference between T0 and T30. 	
IFE17 ENV/FR/000398	 References: (1) Markiewicz, A., Björklund, K., Eriksson, E., Kalmykova, Y., Strömvall, A. M., & Siopi, A. 2017 Emissions of organic pollutants from traffic and roads: Priority pollutants selection and substance flow analysis. Science of the Total Environment, 580, 1162-1174. (2) Malaviya, P., et Asha, S. 2012. « Constructed Wetlands for Management of Urban Stormwater Runoff ». Environmental Science and Technology 42 (20), 2153-2214. (3) Gasperi, J., Le Roux, J., Deshayes, S., Ayrault, A., Bordier, L., Boudahmane, L., Budzinski, H., et al. 2022. « Micropollutants in Urban Runoff from Traffic Areas: Target and Non-Target Screening on Four Contrasted Sites ». Water 14 (3), 394. (4) Boesten, J., Aden, K., Beigel, C., Dust, M J., Dyson, S., Soulas, G. 2014. « Guidance document on estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU registration ». Report of the FOCUS Work Group on Degradation Kinetics, EC Doc. (5) Zhang, Chi, Yi Li, Chao Wang, Lihua Niu, et Wei Cai. 2016b. « Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: A review ». <i>Critical Reviews in Environmental Science and Technology</i> 46 (1), 1-59. (6) Im, Jeongdae, et Frank E. Löffler. 2016. « Fate of Bisphenol A in Terrestrial and Aquatic Environments ». <i>Environmental Science & Technology</i> 50 (16), 8403-16. 	